Chapter Three
Particle in a Potential Well
4.1 The Free Particle

The one-dimensional time-independent Schrodinger equation for a free particle is,
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The general solution is,
W(x) = Ae™ + Be ¥ -(42)

Where A and B are arbitrary constants. For a solution to be physically acceptable, k
must be real, otherwise ¥ (x) would become unbounded at one of the limits x = oo
or x = —oo. Therefore, we must have E > 0, so the energy spectrum is continuous.

The energy eigenvalues are given by,
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Each eigenvalue is doubly degenerate because two linearly independent
eigenfunction e*** and e ~** correspond to it.

The full wave function for a free particle is,
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where @ = E/h 1s the angular frequency. Let us now consider the case when
B = 0. The resulting wave function is

¥(x, 1) = 4" @D ...(4.5)



This is a plane wave travelling in the positive x-direction. Therefore, 1t must
be associated with a free particle of mass m moving along the x-axis in the

positive direction with momentum p = hk and energy E = h*k*/2m.
If A =0, the resulting wave function would be
¥ (x, f) = Bekxron ...(4.6)
This represents a plane wave traveling in the negative x-direction.

Momentum eigenfunction

Let us now operate on the cigenfunctions exp (ikx) and exp (— ikx) with the
momentum operator
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We find that the functions exp (ikx) and exp (— ikx) are eigenfunctions of the
momentum operator with the eigenvalues 7k and — Ak, respectively. Thus, these
functions are not only energy eigenfunctions, but also momentum eigenfunctions.

The position probability density
P=|¥(x, 0] = |4
We find that P is independent of time t as well as the position x of the particle.

The probability current density
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This is independent of t and x, as expected for stationary states.

H.W.: In the case of a plane wave traveling in the negative x-direction
(Be~i(ex+@0)) find the position probability density and the probability current
density for this wavefunction.

Normalization of Momentum Eigenfunctions

Let us consider the momentum eigenfunction
Y (x) = Ae™

It is easy to see that ¥, (x) cannot be normalized in the usual way because:
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Therefore, it is necessary to have alternative ways of normalizing it.
Box Normalization

It is assumed that the particle is enclosed in a large one-dimensional box of length
L, at the walls of which the wave functions satisfy the periodic boundary condition

Vi(x + L) = yi(x) ...(4.8)
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This restricts k to the discrete values
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Therefore, the energy levels also become discrete:
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As L increases, the spacings of the energy levels decrease. So, for a very large box,
the energy level spectrum is practically continuous.

The normalization of Y, (x) is,
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Then |A|* = -, we have A = N7
Therefore, the normalized momentum eigenfunctions are given by,
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The eigenfunctions are, in fact, orthonormal:
L L
2, 10z ., .
f YY) dx =+ j Lel(k—k)x dx = 8y, ...(4.12)
L _L

8 =1 for k =1k
8, =0 for k #k



