
Chapter Three 

Particle in a Potential Well  

4.1 The Free Particle 

The one-dimensional time-independent Schrodinger equation for a free particle is, 

 

The general solution is, 

 

Where A and B are arbitrary constants. For a solution to be physically acceptable, k 

must be real, otherwise 𝜓(𝑥) would become unbounded at one of the limits 𝑥 = ∞ 

or 𝑥 = −∞. Therefore, we must have 𝐸 ≥ 0, so the energy spectrum is continuous. 

The energy eigenvalues are given by,  

 

Each eigenvalue is doubly degenerate because two linearly independent 

eigenfunction 𝑒𝑖𝑘𝑥 and 𝑒−𝑖𝑘𝑥 correspond to it. 

The full wave function for a free particle is, 

Ψ(𝑥, 𝑡) = 𝜓(𝑟)𝑒−𝑖𝐸𝑡 ℏ⁄  
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If A = 0, the resulting wave function would be 

 

This represents a plane wave traveling in the negative x-direction.  

Momentum eigenfunction 

 

 

 

The position probability density 

 

We find that P is independent of time t as well as the position x of the particle. 

The probability current density 
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This is independent of t and x, as expected for stationary states. 

H.W.: In the case of a plane wave traveling in the negative x-direction 

(𝐵𝑒−𝑖(𝑘𝑥+𝜔𝑡)), find the position probability density and the probability current 

density for this wavefunction. 

Normalization of Momentum Eigenfunctions 

Let us consider the momentum eigenfunction  

 

It is easy to see that 𝜓𝑘(𝑥) cannot be normalized in the usual way because: 

∫ 𝜓𝑘
∗ (𝑥)𝜓𝑘(𝑥) 𝑑𝑥

∞

−∞

= ∫ 𝐴∗𝑒−𝑖𝑘𝑥𝐴 𝑒𝑖𝑘𝑥 𝑑𝑥
∞

−∞

= |𝐴|2 ∫  𝑑𝑥 = ∞
∞

−∞

 

Therefore, it is necessary to have alternative ways of normalizing it. 

Box Normalization 

It is assumed that the particle is enclosed in a large one-dimensional box of length 

L, at the walls of which the wave functions satisfy the periodic boundary condition 

 

 

As L increases, the spacings of the energy levels decrease. So, for a very large box, 

the energy level spectrum is practically continuous.  

The normalization of 𝜓𝑘(𝑥) is, 
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∫ 𝜓𝑘
∗ (𝑥)𝜓𝑘(𝑥) 𝑑𝑥

𝐿/2

−𝐿/2

= ∫ 𝐴∗𝑒−𝑖(𝑘+𝐿)𝑥𝐴 𝑒𝑖(𝑘+𝐿)𝑥  𝑑𝑥
𝐿/2

−𝐿/2

= |𝐴|2 ∫  𝑑𝑥 = 1
𝐿/2

−𝐿/2

 

Then |𝐴|2 =
1

𝐿
 , we have 𝐴 =

1

√𝐿
 

Therefore, the normalized momentum eigenfunctions are given by, 

𝜓𝑘(𝑥) =
1

√𝐿
  𝑒𝑖𝑘𝑥 

The eigenfunctions are, in fact, orthonormal: 

∫ 𝜓𝑘́
∗ (𝑥)𝜓𝑘(𝑥) 𝑑𝑥

𝐿
2

−
𝐿
2

=
1

𝐿
∫ 𝑒𝑖(𝑘−𝑘́)𝑥  𝑑𝑥 = 𝛿𝑘𝑘́

𝐿
2

−
𝐿
2

 

𝛿𝑘𝑘́ = 1  for  𝑘 = 𝑘́     

𝛿𝑘𝑘́ = 0  for  𝑘 ≠ 𝑘́ 

…(4.11) 


